Relic Neutrinos

- Relic Neutrinos in the Standard Model
- Direct Detection?
- Nucleosynthesis
- Beyond the Standard Model

Expectations for the Relic Neutrinos

ullet $u_i, ar
u_i$ decoupled at $T_D \sim {\sf few} \; {\sf MeV}$

$$egin{array}{lcl} f_{
u_i} &=& F_{eq}(p',m_i,\mu_{D_i},T_D) \ &=& \left[\exp\left(rac{(p'^2+m_i^2)^{1/2}-\mu_{D_i}}{T_D}
ight) +1
ight]^{-1} \ f_{ar{
u}_i} &=& F_{eq}(p',m_i,-\mu_{D_i},T_D) \end{array}$$

ullet Subsequently, p' redshifted to $p=p'/\eta$, where $\eta\equiv R(t)/R(t_D)$

$$egin{array}{lcl} f_{
u_i} &
ightarrow & F_{eq}(p',m_i,\mu_{D_i},T_D) \ & = & F_{eq}(p,m_i/\eta,\mu_{D_i}/\eta,T_D/\eta) \ & = & \left[\exp\left(rac{(p^2+m_{eff_i}^2)^{1/2}-\mu_i}{T_
u}
ight) + 1
ight]^{-1} \end{array}$$

$$m_{eff_i} \equiv rac{m_i}{\eta} \ll m_i, \quad T_
u \equiv rac{T_D}{\eta} = \left(rac{4}{11}
ight)^{1/3} T_\gamma \sim 1.9 K, \quad \mu_i \equiv rac{\mu_{D_i}}{\eta} \ (\mu_i
ightarrow - \mu_i ext{ for } ar{
u}_i)$$

- ullet Form of relativistic thermal distribution, but (negligible) $m_{eff} \ll T_
 u$
- Actually decoupled and may be non-relativistic

ullet For $\mu_i=0$,

$$egin{array}{lcl} N_{
u_i} &=& N_{ar{
u}_i} = \int rac{d^3p}{e^{p/T_
u}+1} \sim 50/cm^3 \ &\langle p
angle &\sim & 3.2T_
u \sim 5.2{ imes}10^{-4}~eV \end{array}$$

For hierarchical pattern

$$m_3 \sim 0.05 \; eV, \;\; m_2 \sim 0.005 \; eV, \;\; m_1 \ll m_2$$

$$(\langle v_3
angle \sim 10^{-2}, \ \langle v_2
angle \sim 10^{-1})$$

ullet For degenerate pattern, $m_1 \sim m_2 \sim m_3 \lesssim 0.23~eV$ (WMAP),

$$\langle v_i
angle \sim 2{ imes}10^{-3} \left(rac{0.23\;eV}{m_i}
ight)$$

For hierarchical pattern

$$m_3 \sim 0.05 \; eV, \;\; m_2 \sim 0.005 \; eV, \;\; m_1 \ll m_2$$

$$(\langle v_3 \rangle \sim 10^{-2}, \ \langle v_2 \rangle \sim 10^{-1})$$

ullet For degenerate pattern, $m_1 \sim m_2 \sim m_3 \lesssim 0.23~eV$ (WMAP),

$$\langle v_i
angle \sim 2{ imes}10^{-3} \left(rac{0.23\;eV}{m_i}
ight)$$

• Clustering?

$$v_{\rm esc} \sim 10^{-4} \, (\mathrm{Sun}), \; 2 \times 10^{-3} \, (\mathrm{Galaxy}), \; 3 \times 10^{-3} \, (\mathrm{Large \; Cluster})$$

- Little effect on velocities except degenerate case
- Little clustering unless $m_i \gtrsim 0.3~eV$, and then on supercluster scale (Singh, Ma)

• Non-zero asymmetry, $\mu_i \neq 0$:

$$N_{
u_i}-N_{ar
u_i}=rac{T_
u^3}{6}\left[\xi_i+rac{\xi_i^3}{\pi^2}
ight],\quad \xi_i\equivrac{\mu_i}{T_
u}$$

BBN + CMB: $-0.01 < \xi_e < 0.22$, $|\xi_{\mu,\tau}| < 2.6$ CMB + BBN + equilibration: $|\xi_i| < 0.07$ (Lunardini, Smirnov; Dolgov et al; Wong; Abazajian, Beacom, Bell) (unless new energy source)

But, naive expectation is $|\xi| = O(10^{-11})$

Implications

- Direct Detection
- CMB, large scale structure
 - $-\sum_{i} m_{i} < 0.71 \ eV$ (small scale suppression)
 - $-|\xi_i| < O(2)$ (onset of matter domination)

BBN

- Sterile Neutrinos
- Dirac neutrinos
 - * In Standard Model
 - * With new interactions (Barger, PL, Lee)
- Hiding new degrees of freedom (Barger, Kneller, PL, Marfatia,
 Steigman)

Direct Detection

Incoherent scattering from fixed target

$$\sigma_{
u} \sim G_F^2 E_{
u}^2 \sim 10^{-62} \ cm^2 \ (m_{
u} = 0), \ \ 10^{-58} \ cm^2 \ (m_{
u} \sim 0.1 \ eV)$$

- Rate per target atom: $\sigma_{
 u}j_{
 u}\sim 10^{-42}~(10^{-38})/yr$ for $j_{
 u}\sim 3 imes 10^{12}/cm^2-s$
- For $N\sim 10^{21}$ particles in coherence volume of radius $\lambda=1/p\sim 2.4~mm{ o}\sigma_{\nu}j_{\nu}N^2\sim 1/yr$. Signal?
- No practical G_F^2 detection schemes

• Scattering of high energy cosmic ray neutrinos (Z-burst) (Weiler)

$$u_i \bar{\nu}_i \to Z \to \text{particles},$$

at $E^R \sim 4 \times 10^{21}~eV/m_{\nu}(eV)$. Secondary nucleons after distance D:

$$E_p \sim rac{10^{21} imes (0.8)^{D/6Mpc}}{(m_
u/0.1 \; eV)}$$

- Account for $E_p>$ GZK? (Best fit $m_
 u=0.26^{+0.20}_{-0.14}~eV$, Fodor, Katz, Ringwald)
- Future observation? Depends on unknown flux of UHEu

Forces, Torques on Macroscopic Objects

ullet Coherent forward elastic scattering. $\lambda \sim 2.4 \ mm \gg$ atomic spacing suggests ray optics, with refractive indices

$$n_{
u,ar{
u}} - 1 = rac{2\pi}{p^2} \sum_a N_a f^a_{
u,ar{
u}}(0)$$

$$f^a_{
u,ar
u}(0) = \mp rac{1}{\pi} rac{G_F E}{\sqrt{2}} K(p,m_
u) \left[g^a_V + g^a_A ec\sigma_a \cdot \hat p
ight],$$

where $K o (1, rac{1}{2})$ for $(m_
u = 0, \; p \ll m_
u),$ and

$$-L=rac{G_F}{\sqrt{2}}ar
u\gamma_\mu(1+\gamma_5)
uar\psi_a\gamma^\mu(g_V^a+g_A^a\gamma_5)\psi_a$$

For polarized iron and SM couplings,

$$egin{array}{lll} n_{
u_e,ar{
u}_e} - 1 &=& \mp 2.3{ imes}10^{-10} \left[1 + 0.85 \langle ec{\sigma}_e
angle \cdot \hat{p}
ight] \ n_{
u_\mu,ar{
u}_\mu} - 1 &=& \pm 3.1{ imes}10^{-10} \left[1 + 1.2 \langle ec{\sigma}_e
angle \cdot \hat{p}
ight] \end{array}$$

- Net force from refraction for asymmetric geometry?
- Movement through ν sea needed?
- $\nu \bar{\nu}$ cancellation?

- Total external reflection (Opher)
 - Net force of $O(G_F)$ for $heta< heta_c=\sqrt{2(1-n)}\sim 10~\mu rad$ for $n<1~(
 u_e,ar
 u_\mu,ar
 u_ au)$
 - No $\nu \bar{\nu}$ cancellation
 - Need stack of reflectors and motion through u rest frame
 - Concrete proposal (actually $O(G_F^{3/2})$) (Lewis)

- ullet Effect actually vanishes to $O(G_F,G_F^{3/2})$ (PL, Leveille, Sheiman; Cabibbo, Maiani)
 - Total external reflection only occurs for reflector thickness > skin depth $d\sim \lambda/\sqrt{1-n}=O(20~m)$
 - Diffraction at ends unless length $L>10^7\ m$

- ullet Effect actually vanishes to $O(G_F,G_F^{3/2})$ (PL, Leveille, Sheiman; Cabibbo, Maiani)
 - Total external reflection only occurs for reflector thickness > skin depth $d\sim \lambda/\sqrt{1-n}=O(20~m)$
 - Diffraction at ends unless length $L>10^7\ m$
- Theorem (directly from field equations): All $O(G_F)$ forces vanish if time averaged ν flux is spatially homogeneous (isotropy not needed) (PL, Leveille, Sheiman)

- ullet Effect actually vanishes to $O(G_F,G_F^{3/2})$ (PL, Leveille, Sheiman; Cabibbo, Maiani)
 - Total external reflection only occurs for reflector thickness > skin depth $d\sim \lambda/\sqrt{1-n}=O(20~m)$
 - Diffraction at ends unless length $L>10^7\ m$
- Theorem (directly from field equations): All $O(G_F)$ forces vanish if time averaged ν flux is spatially homogeneous (isotropy not needed) (PL, Leveille, Sheiman)
- ullet $O(G_F^2)$ allowed but too small
- ullet Net torque allowed to $O(G_F)$ for magnetized target (Stodolsky; LSS) but very small
- Other: induced phonons, superconducting currents, etc., small
- Large μ_{ν} ? (PL, Davoudiasl)

Big Bang Nucleosynthesis

Parameters

- $-~\eta=n_B/n_{\gamma}~(\eta_{10}\sim 274~\Omega_b h^2)$
- $\Delta N_{
 u}$ (any new source of energy density, relative to one active u flavor)
- $\xi_e=\mu_{
 u_e}/T$, related to $(N_{
 u_e}-N_{ar
 u_e})/n_{\gamma}$
- ullet SBBN: $\Delta N_
 u = \xi_e = 0$

• $\nu_e n \leftrightarrow e^- p$ and $e^+ n \leftrightarrow \bar{\nu}_e p$ keep n_n/n_p in equilibrium as long as it is rapid enough

- $\nu_e n \leftrightarrow e^- p$ and $e^+ n \leftrightarrow \bar{\nu}_e p$ keep n_n/n_p in equilibrium as long as it is rapid enough
 - Freezeout at $T_{\star} \sim 1$ MeV, when $\Gamma_{
 m weak} \sim H$
 - $-\Gamma_{
 m weak} = cG_F^2 T^5$
 - $-~H = \left[rac{8\pi}{3}G_{N}
 ho
 ight]^{1/2} \sim 1.66 g_{\star}^{1/2} T^{2}/M_{Pl}$
 - $-g_{\star}=g_B+rac{7}{8}g_F$, with $g_F=10+2\Delta N_{
 u}$
 - $\ T_\star \sim \left(rac{n_\star^{1/2}}{G_F^2 M_{Pl}}
 ight)^{1/3}$
 - $-\frac{n_n}{n_p} = e^{-(m_n m_p + \mu_{\nu_e})/T_{\star}} \rightarrow {}^4He$
 - 4He mass fraction: $Y_p=rac{4n_{4He}}{n_H}$ depends strongly on $\Delta N_
 u$ ($\Delta Y_p\sim 0.013\Delta N_
 u$) and ξ_e , weakly on η
 - $-Y_2=rac{D}{H}$ depends on η (baryometer)
 - Independent determination of η from CMB

Data

- "High": $Y_p^{
 m exp} = 0.244(2)$ (IT) "Low": $Y_p^{
 m exp} = 0.234(3)$ (OS)
- Will use $\dot{Y}_P=0.238\pm0.005$
- High D/H not confirmed (hydrogen interloper?) in absorption of background quasars \rightarrow use Low $y_D=10^5(D/H)=2.6\pm0.4$
- $-\Omega_b h^2(D/H) = 0.020(2)$
- $-\Omega_b h^2({
 m CMB}) \sim 0.0224(9)$ (DASI, BOOMERanG, MAXIMA,WMAP).

Nonstandard BBN

- Typical range: $-1.5 < \Delta N_{\nu} 16.6 \xi_e < 0.3$
- Most contributions to ΔN_{ν} are positive (decaying ν_{τ} could be negative, but small parameter range)
- Compensations with $\xi_e>0$ possible (not equilibrated $\xi_{\mu, au}$)

- Best $\Delta N_{
 u}=0$ fit for $\xi_e
 eq 0$.
- Data point for $y_D=2.6\pm0.4,\ Y_P=0.238\pm0.005$. (Barger, Kneller, PL, Marfatia, Steigman)

Central values of ξ_e as a function of ΔN_{ν} . The corresponding central values of $10^{10}\eta$ are also shown.

Allowed regions of ξ_e and ΔN_{ν} from helium and deuterium, including WMAP constraints (Barger, Kneller, PL, Marfatia, Steigman).

• $\Delta N_{
u} \sim 0$ for right-handed components of light (eV) Dirac u unless new BSM physics

- $\Delta N_{
 u} \sim 0$ for right-handed components of light (eV) Dirac u unless new BSM physics
 - Produced by mass effects for $m_{
 u} \gtrsim 10 \; {
 m keV}$

- ullet $\Delta N_{
 u} \sim 0$ for right-handed components of light (eV) Dirac u unless new BSM physics
 - Produced by mass effects for $m_{
 u} \gtrsim 10 \ {
 m keV}$
 - New weak interactions: e.g. $f\bar{f}{
 ightarrow}
 u_R \bar{
 u}_R$ by Z' or Z-Z' mixing (Olive, Schramm, Steigman)
 - Results model dependent. Detailed calculations yield large ΔN_{ν} in E_6 models. (Suppressed in $Z'\nu_R\bar{\nu}_R$ decoupling limit.) (Barger, Lee, PL, PR D67)

ullet Ordinary-sterile mixing in 4 u schemes

- Produce u_s by oscillations and active scattering (decoherence) $ightarrow \Delta N_{
 u} \sim 1$
- Solar SMA into sterile would have been allowed, but not larger Δm^2 or mixings
- Self-suppression (BFV,SFA): $\Delta L \neq 0 \Rightarrow$ could self-generate lepton asymmetries to either (a) suppress sterile production or (b) generate compensating ξ_e

• Ordinary-sterile mixing in 4 ν schemes

- Produce u_s by oscillations and active scattering (decoherence) $ightarrow \Delta N_{
 u} \sim 1$
- Solar SMA into sterile would have been allowed, but not larger Δm^2 or mixings
- Self-suppression (BFV,SFA): $\Delta L \neq 0 \Rightarrow$ could self-generate lepton asymmetries to either (a) suppress sterile production or (b) generate compensating ξ_e
- Self-suppression now excluded for all 3+1 and 2+2 parameters
 (Di Bari, PR D65). (Also, solar + atm. fits (Maltoni et al, NP B643)).
- Could save with large (O(1)) preexisting asymmetry or 5th (heavier) sterile ν_s leading to asymmetry

The GUT Seesaw

- Elegant mechanism for small Majorana masses
- Leptogenesis
- Expect small mixings in simplest versions (can evade by lopsided e/d, Majorana textures, etc.)
- ullet Large Majorana often forbidden, e.g., by extra U(1)'s
- Direct Majorana masses and large scales forbidden in some string constructions
- GUTs, adjoint Higgs, large Higgs hard to accommodate in simplest heterotic constructions

- LSND: active-sterile difficult in simple versions
- Therefore, explore alternatives, e.g., with small Dirac and/or Majorana masses

- LSND: active-sterile difficult in simple versions
- Therefore, explore alternatives, e.g., with small Dirac and/or Majorana masses
 - Small Majorana from loops, R_p violation, or TeV seesaw

- LSND: active-sterile difficult in simple versions
- Therefore, explore alternatives, e.g., with small Dirac and/or Majorana masses
 - Small Majorana from loops, R_p violation, or TeV seesaw
 - Small Dirac from large extra dimension or by higher dimensional operators in intermediate scale models (e.g. U(1)')

$$L_
u \sim \left(rac{S}{M_{Pl}}
ight)^p L N_L^c H_2, \quad \langle S
angle \ll M_{Pl}$$

$$r \Rightarrow m_{
u} \sim \left(rac{\langle S
angle}{M_{Pl}}
ight)^p \langle H_2
angle$$

(flexible seesaw alternative; can also yield large ordinary-sterile mixing (PL))

A TeV scale Z'?

Motivations

- Strings, GUTs, DSB often involve extra U(1)'(GUTs require extra fine tuning for $M_{Z'} \ll M_{\mathrm{GUT}}$)
- String models: radiative breaking of electroweak (SUGRA or gauge mediated) often yield ew/TeV scale Z' (unless breaking along flat direction \rightarrow intermediate scale)
- Solution to μ problem

$$W \sim hSH_uH_d$$

S= standard model singlet, charged under U(1)'. $\langle S \rangle$ breaks U(1)', $\mu_{eff}=h\langle S \rangle$ (like NMSSM, but no domain walls)

- Experimental limits (precision and collider) model dependent, but typically $M_{Z'}>(500-800)~GeV$ and Z-Z' mixing $|\delta|<{
 m few}\times 10^{-3}$
- ullet Models: $M_{Z'}\gtrsim 10 M_Z$ by either modest tuning (Demir et al), or by secluded sector (Erler, PL, Li)

Implications

- Exotics
- FCNC (especially in string models)
- Non-standard Higgs masses, couplings (doublet-singlet mixing)
- Non-standard sparticle spectrum
- Enhanced possibility of EW baryogenesis (Han, Kang, PL, Li)

Big Bang Nucleosynthesis Constraints on Z'

(Barger, Lee, PL, PR D67, 2003)

- Suppose U(1)' forbids large Majorana mass for ν_R needed for traditional seesaw \Rightarrow need TeV seesaw or small Dirac masses
- $\nu_L \bar{\nu}_L, e^+ e^- \rightarrow Z' \rightarrow \nu_R \bar{\nu}_R$ (or $W' \rightarrow e \nu_R$, etc) can produce ν_R efficiently prior to BBN (Olive, Schramm, Steigman, 1979)

- Rough estimate: $\sigma_{Z'}/\sigma_Z \sim (M_Z/M_{Z'})^4$
- ν_R decouples for reaction rate $\Gamma_{Z'}(T)=n\langle\sigma_{Z'}v\rangle\sim G_W^2(M_Z/M_{Z'})^4T^5$ comparable to expansion rate $H\sim T^2/M_{Pl}$ at.

$$T_d(
u_R) \; \sim \left(rac{M_{Z'}}{M_Z}
ight)^{4/3} T_d(
u_L),$$

where $T_d(\nu_L) \sim {\sf few} \; MeV$.

– ν_R subsequently diluted by annihilations of heavy particles $(c,~\tau,~s,~\mu,~\pi)$ and by the confinement of quarks and gluons at quark-hadron transition at $T_c\sim 150-400$ MeV (these reheat $e^\pm,~\nu_L,\gamma$ but not ν_R

- Full treatment requires detailed contributions of heavy particles to interactions, expansion rate, and entropy; and $Z-Z^\prime$ mixing
 - For three types of right-handed neutrinos

$$\Delta N_
u = 3 \cdot \left(rac{T_{
u_R}}{T_{BBN}}
ight)^4 = 3 \left(rac{g(T_{BBN})}{g(T_d(
u_R))}
ight)^{4/3},$$

Follows from entropy conservation.

 $T_d(\nu_R)$ is the ν_R decoupling temperature, $g(T) \sim g_B(T) + \frac{7}{8}g_F(T)$ (+ mass effects), $g_{B,F}(T)$ are the number of bosonic and fermionic relativistic degrees of freedom in equilibrium at temperature T.

- $g(T_{BBN})=43/4$ from the three active neutrinos, e^{\pm} , and γ , and g(T) increases (in this approximation) as a series of step functions at higher temperature. Above quark-hadron temperature $T_c\sim 150-400~MeV$ include quarks and gluons $(u,~d,~s,\cdots)$; below T_c may have pions.

- $g(T_{BBN})=43/4$ from the three active neutrinos, e^{\pm} , and γ , and g(T) increases (in this approximation) as a series of step functions at higher temperature. Above quark-hadron temperature $T_c\sim 150-400~MeV$ include quarks and gluons $(u,~d,~s,\cdots)$; below T_c may have pions.

g(T) for $T_c=150$ and 400~MeV, not including the three u_R (Olive et al.)

– Find $T_d(
u_R)$ by comparing $\overline{
u_R}
u_R$ annihilation rate

$$\Gamma(T) = \sum_i \Gamma_i(T) = \sum_i rac{n_{
u_R}}{g_{
u_R}} raket{\sigma v(\overline{
u_R}
u_R
ightarrow \overline{f_i}f_i, \; \pi^+\pi^-)},$$

with expansion rate

$$H(T) = \sqrt{rac{8\pi G_N
ho(T)}{3}} = \sqrt{rac{4\pi^3 G_N g'(T)}{45}} T^2,$$

with $g'(T)=g(T)+rac{21}{4}$, for the 3 u_R .

– For $\sigma_i(s) \equiv \sigma(\overline{
u_R}
u_R
ightarrow \overline{f_i}f_i)$

$$egin{array}{lll} \sigma_i(s) &=& N_C^i rac{seta_i}{16\pi} \left\{ \left(1 + rac{eta_i^2}{3}
ight) \left((G_{RL}^i)^2 + (G_{RR}^i)^2
ight) \ &+ 2 \left(1 - eta_i^2
ight) G_{RL}^i G_{RR}^i
ight\} \end{array}$$

where (for $s \ll M_{Z_1}^2, M_{Z_2}^2$)

$$egin{array}{lll} G_{RX}^i &=& g_Z^{\prime 2} Q(
u_R) Q(f_{iX}) \left(rac{\sin^2 \delta}{M_{Z_1}^2} + rac{\cos^2 \delta}{M_{Z_2}^2}
ight) \ &-& g_Z^\prime g_Z Q(
u_R) Q_Z(f_{iX}) \left(rac{\sin \delta \cos \delta}{M_{Z_1}^2} - rac{\sin \delta \cos \delta}{M_{Z_2}^2}
ight), \end{array}$$

 $Q(Q_Z)=Z'(Z)$ charge, X=L or R, $\beta_i\equiv\sqrt{1-4m_{f_i}^2/s}$, N_C^i is the color factor of f_i , and $\delta=Z-Z'$ mixing angle.

The E_6 U(1)' Model

- Standard anomaly-free U(1)' model, but not full GUT (proton decay)
- Two U(1)' factors

$$E_6
ightarrow SO(10) imes U(1)_\psi
ightarrow SU(5) imes U(1)_\chi imes U(1)_\psi$$

Assume one light, with charge

$$Q = Q_{\chi} \cos \theta_{E6} + Q_{\psi} \sin \theta_{E6}$$

Special case,
$$U(1)_{\eta}$$
: $heta_{E6}=2\pi- an^{-1}\sqrt{rac{5}{3}}=1.71\pi.$

The (family-universal) charges of the $U(1)_\chi$ and the $U(1)_\psi.$

Fields	Q_χ	Q_{ψ}
u_L	$-1/2\sqrt{10}$	$1/2\sqrt{6}$
u_R	$1/2\sqrt{10}$	$-1/2\sqrt{6}$
d_L	$-1/2\sqrt{10}$	$1/2\sqrt{6}$
d_R	$-3/2\sqrt{10}$	$-1/2\sqrt{6}$
e_L	$3/2\sqrt{10}$	$1/2\sqrt{6}$
e_R	$1/2\sqrt{10}$	$-1/2\sqrt{6}$
$ u_L $	$3/2\sqrt{10}$	$1/2\sqrt{6}$
$ u_R$	$5/2\sqrt{10}$	$-1/2\sqrt{6}$

• Z - Z' mixing δ

```
(A0) \ \delta = 0 \ (\text{no mixing}) (A1) \ |\delta| < 0.0051/M_{Z_2}^2 \ (\text{mass-mixing relation for } 27 - \text{plet}) (A2) \ |\delta| < 0.0029/M_{Z_2} \ (\rho_0 \ \text{constraint}) (A3) \ |\delta| = 0.002 \ (\text{maximal mixing allowed for } M_{Z_2} \sim 1 \ TeV).
```

(A1 more stringent than A2 and A3 in the large mass range)

 T_d (top) and ΔN_{ν} (bottom) for the η model, for $T_c=150$ MeV (circles) and 400 MeV (crosses). Left: A0 and A3. Right: A1 and A2.

Results for the General E_6 Model

 T_d (left) and ΔN_{ν} (middle) for $M_{Z_2}=500$, 1000, 1500, 2000, 2500, 3500, 4000, and 5000 GeV, for $T_c=150$ MeV and no mixing. Larger M_{Z_2} corresponds to higher T_d and smaller ΔN_{ν} . Right: M_{Z_2} corresponding to $\Delta N_{\nu}=0.3,~0.5,~1.0$ and 1.2, with larger ΔN_{ν} corresponding to smaller M_{Z_2} . $\chi,~\psi,~{\rm and}~-\eta$ correspond to $\theta_{E6}=0,~\pi/2,~0.71\pi$. The results including mixing are similar.

- Very sensitive to θ_{E6} , δ , and T_c
- η model
 - $\Delta N_{
 u} < 0.3 \Rightarrow M_{Z'} > (2.5-3.2) \; TeV \; {\sf for} \; T_c = 150 \; MeV$
 - $\Delta N_{
 u} < 0.3 \Rightarrow M_{Z'} > (4.0-4.9) \; TeV \; {
 m for} \; T_c = 400 \; MeV$
- ullet General E_6 case (all mixing assumptions)
 - $\Delta N_{
 u} < 0.3$ for all $heta_{E6}$ for $M_{Z'} > 2.4~TeV~(T_c=150~MeV)$ (more stringent for $T_c=400~MeV$)
 - Limits disappear near u_R decoupling angle $heta_{E6}=0.42\pi$ ($\chi=0,\ \psi=\pi/2,\ -\eta=0.71\pi$)
- Constraints often much more stringent than current direct/indirect;
 comparable to LHC range
- For $\Delta N_{\nu} < 0.3$, somewhat more stringent than supernova limits, but different uncertainties.

Implications

- ullet U(1)' may forbid traditional GUT-scale seesaw
- ullet Z' masses severely constrained for Dirac u by BBN

Implications

- U(1)' may forbid traditional GUT-scale seesaw
- ullet Z' masses severely constrained for Dirac u by BBN
- Ways out
 - TeV seesaw or other non-Dirac mechanism
 - Large ξ_e asymmetry (equilibration limits don't apply because of $\Delta N_
 u$)
 - ν_R decoupling from Z' (can occur naturally in $U(1)' \times U(1)'$ model)

Natural ν_R Decoupling in $U(1)' \times U(1)'$

• Break $U(1)'\times U(1)'$ by standard model singlets $\tilde{\nu}_R+\tilde{\nu}_R^*$ and $\tilde{s}_L+\tilde{s}_L^*$ from 27, 27*-plets. D terms:

$$egin{array}{lll} V_\chi + V_\psi &=& rac{g'^2}{2} \left[rac{5}{2\sqrt{10}} (| ilde{
u}_R|^2 - | ilde{
u}_R^*|^2)
ight]^2 \ &+& rac{g'^2}{2} \left[rac{1}{\sqrt{24}} (-| ilde{
u}_R|^2 + | ilde{
u}_R^*|^2 - 4| ilde{s}_L|^2 + 4| ilde{s}_L^*|^2)
ight]^2, \end{array}$$

Natural u_R Decoupling in U(1)' imes U(1)'

• Break $U(1)'\times U(1)'$ by standard model singlets $\tilde{\nu}_R+\tilde{\nu}_R^*$ and $\tilde{s}_L+\tilde{s}_L^*$ from 27, 27*-plets. D terms:

$$egin{array}{lll} V_\chi + V_\psi &=& rac{g'^2}{2} \left[rac{5}{2\sqrt{10}} (| ilde{
u}_R|^2 - | ilde{
u}_R^*|^2)
ight]^2 \ &+& rac{g'^2}{2} \left[rac{1}{\sqrt{24}} (-| ilde{
u}_R|^2 + | ilde{
u}_R^*|^2 - 4| ilde{s}_L|^2 + 4| ilde{s}_L^*|^2)
ight]^2, \end{array}$$

• D-flat for $|\tilde{\nu}_R|^2=|\tilde{\nu}_R^*|^2\equiv |\tilde{\nu}|^2$ and $|\tilde{s}_L|^2=|\tilde{s}_L^*|^2\equiv |\tilde{s}|^2$. May also be F-flat, broken by soft masses,

$$V(ilde{
u}, ilde{s})=m_{ ilde{
u}}^2| ilde{
u}^2|+m_{ ilde{s}}^2| ilde{s}^2|$$

• Z' mass terms

$$\mathcal{L} = g'^2 \left(-rac{5}{2\sqrt{10}} Z_\chi + rac{1}{\sqrt{24}} Z_\psi
ight)^2 \left(| ilde{
u}_R|^2 + | ilde{
u}_R^*|^2
ight) \ + g'^2 \left(rac{4}{\sqrt{24}} Z_\psi
ight)^2 \left(| ilde{s}_L|^2 + | ilde{s}_L^*|^2
ight)$$

\bullet Z' mass terms

$$egin{array}{lll} \mathcal{L} &=& g'^2 \left(-rac{5}{2\sqrt{10}} Z_\chi + rac{1}{\sqrt{24}} Z_\psi
ight)^2 \left(| ilde{
u}_R|^2 + | ilde{
u}_R^*|^2
ight) \ &+ g'^2 \left(rac{4}{\sqrt{24}} Z_\psi
ight)^2 \left(| ilde{s}_L|^2 + | ilde{s}_L^*|^2
ight) \end{array}$$

For $m_{\tilde{s}}^2>0$ and $m_{\tilde{\nu}}^2<0$ the breaking will occur along $|\tilde{\nu}_R|=|\tilde{\nu}_R^*|$ very large, with the potential ultimately stabilized by loop corrections or higher dimensional operators. \tilde{s}_L and \tilde{s}_L^* will acquire (usually different) TeV-scale expectation values.

- $-Z_1\equiv rac{1}{\sqrt{24}}Z_\chi+rac{5}{2\sqrt{10}}Z_\psi$ at TeV scale (Z_1 decouples from ν_R , avoiding BBN, supernova constraints)
- $-Z_2\equiv -rac{5}{2\sqrt{10}}Z_\chi+rac{1}{\sqrt{24}}Z_\psi$ superheavy (can use Z_2 scale for small Dirac u_R mass by HDO)

Conclusions

- ullet Relic neutrinos important for BBN, CMB, structure, u mass spectrum
- Direct detection extremely difficult. Z burst?
- \bullet Z' very well motivated, but may forbid canonical large-scale seesaw
- ullet Light Dirac (e.g., by HDO) produced efficiently by Z'
 - Strong BBN constraints
 - Relax by ξ_e asymmetry or ν_R decoupling